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3The transmission line equations
As seen in the lecture 3.1, the distributed-parameter model of an electrical 
line is represented by the figure here below.
Furthermore, we assume that:
1. three-phase line in a sinusoidal steady state conditions;
2. three-phase system symmetrical with the current and balanced with the 

voltages;
3. line characterized by a symmetrical structure of conductors.
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Model of an electrical line for the representation with distributed parameters.
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4The transmission line equations

• 𝑟  is the line resistance in per unit of length: it represents the 
longitudinal Joule-effect dissipative phenomena;

• 𝑙’ is the effective inductance in per unit of length: it represents the 
magnetic coupling among the different conductors (it is an 
equivalent parameter for a 𝑛-conductor line);

• 𝑐′ is the effective capacity in per unit of length: it represents the 
electrical coupling among the different conductors and the ground 
plane (it is an equivalent parameter for a 𝑛-conductor line);

• 𝑔 is the conductance of the line in per unit of length: it models the 
transverse power losses of the line due to (i) the corona effect and 
(ii) insulation losses (insulators for overhead lines or insulation 
materials for coaxial cables).
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Thus, we can define two important line parameters:

§ The longitudinal impedance in per unit of length:

§ The transverse admittance in per unit of length:

Thanks to the representation of sinusoidal quantities in the complex 
domain we have:

and

The transmission line equations

z= r+ jω l '  Ωm−1⎡⎣ ⎤⎦

y = g + jωc ' Sm−1⎡⎣ ⎤⎦

!"#!$ =!"#

!"#!$ =!"#



6The transmission line equations
Let us recall the transmission lines or telegraphers’ equations derived 
in the lecture 3.1.

In the figure below, the boundary conditions for the current and the 
voltage are given along with the two possible orientations of the 𝑥-
axis. 𝐿 is the total line length.

dE x

dx
+ zIx = 0

dIx
dx

+ yEx = 0

x+ x- 
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The integration of these last two equations can be obtained by using 
the Laplace transform (henceforth denoted as ℓ-transform):

In our case we have

(see figure on slide 6 the orientation 𝑥!) and the ℓ-transform of the 
transmission line equations is:

The transmission line equations

 

df x( )
dx

⎡
⎣⎢

⎤
⎦⎥
= p ⋅ f x( )⎡⎣ ⎤⎦ − f 0( )

Ex
x =0

=E p

 p ⋅ E x⎡⎣ ⎤⎦ − E p= −z Ix⎡⎣ ⎤⎦

 p ⋅ I x⎡⎣ ⎤⎦ − I p = −y Ex⎡⎣ ⎤⎦

I x
x =0

= I p



8The transmission line equations

Using the last equation, we get:

 

That, replaced into                                      allows to obtain:

or:

From the last, we can derive the expression for          :

 
 I x⎡⎣ ⎤⎦ =

I p
p
− y
p
 Ex⎡⎣ ⎤⎦

 
p ⋅ E x⎡⎣ ⎤⎦ + z

I p
p
− y
p
 Ex⎡⎣ ⎤⎦

⎡

⎣
⎢

⎤

⎦
⎥ = Ep

 p
2 ⋅ E x⎡⎣ ⎤⎦ + zI p − zy Ex⎡⎣ ⎤⎦ = p ⋅Ep

  E x⎡⎣ ⎤⎦

 
 E x⎡⎣ ⎤⎦ =

p ⋅Ep − zI p
p2 − zy

 p ⋅ E x⎡⎣ ⎤⎦ − E p= −z Ix⎡⎣ ⎤⎦



9The transmission line equations

The solution for the current is trivially obtained:

Based on the definition of the line per-unit-length longitudinal 
impedance and transverse admittance on slide 5, we can define 
the following additional parameters:
§ The propagation constant:

§ The characteristic impedance:

 
 I x⎡⎣ ⎤⎦ =

I p
p
− y

p ⋅Ep − zI p
p2 − zy

=
p ⋅ I p − yEp

p2 − zy

γ = z y =α + jβ = r + jωl( ) g + jωc( )  m−1⎡⎣ ⎤⎦

Z0 =
z
y
= r + jωl '

g + jωc '
 Ω[ ]
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On the basis of the previous parameters, we can rewrite the
ℓ-tranform of voltage as follows:

and the ℓ-tranform of current as:

 

The inverse ℓ-tranforms of these two last equations can be obtained 
by noting that:

The expression of the current and voltage as a function of the 𝑥 
coordinate of the line can be finally obtained specifying the line 
initial conditions for 𝑥 = 0:

 
 E x⎡⎣ ⎤⎦ =

p ⋅Ep −γ Z0I p
p2 −γ 2

 
 I x⎡⎣ ⎤⎦ =

p ⋅ I p −
γ
Z0
Ep

p2 −γ 2

 
−1

p
p2 − γ 2

⎡

⎣
⎢

⎤

⎦
⎥ = coshγ x

 
−1

γ
p2 − γ 2

⎡

⎣
⎢

⎤

⎦
⎥ = sinhγ x

Ex
x =0

=E p I x
x =0

= I p

The transmission line equations
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In the case other boundary conditions are used, it is possible to use 
the general integral derived from the obtained solution:

or, is an equivalent form, by replacing functions cosh𝑥	and sinh𝑥 with 
the respective definitions:

 Ex = E p coshγ x − Z 0 I p sinhγ x

 
I x = I p coshγ x − E p

Z 0
sinhγ x

 
Ex = C1 coshγ x + C 2 sinhγ x( )

 
I x = 1

Z 0
−C1 sinhγ x − C 2 coshγ x( )

sinh x = e
x − e− x

2

cosh x = e
x + e− x

2

The transmission line equations
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The constants              and           , are determined based on the 
boundary conditions. For example, if we consider the orientation 𝑥!, 
the following conditions at the line start and the solution of the 
transmission line equations with complex exponentials, we have:

and we obtain:
4𝐸" = 6𝐾# + 6𝐾$

̅𝐼" =
1
𝑍̅%

−6𝐾# + 6𝐾$

6𝐾# =
1
2

4𝐸" − 𝑍̅% ̅𝐼"

6𝐾$ =
1
2

4𝐸" + 𝑍̅% ̅𝐼"

Ex = K1 eγ ⋅x + K 2 e−γ ⋅x

I x = 1
Z 0

−K1 eγ ⋅x + K 2 e−γ ⋅x( )
!"#!! K1,K2

!
"

" ## =
=!

!
"

" ## =
=!

The transmission line equations
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And the general solution for this orientation and boundary conds is:

or, by using the solutions of the transmission line equations expressed 
with cosh𝑥	and sinh𝑥, we have:

and the solution is:

4𝐸& = 4𝐸"cosh𝛾̅𝑥 − 𝑍̅% ̅𝐼"sinh𝛾̅𝑥

̅𝐼& = ̅𝐼"cosh𝛾̅𝑥 −
4𝐸"
𝑍̅%
sinh𝛾̅𝑥

Ex = 1
2
E p −Z 0 I p( ) eγ x + 1

2
E p +Z 0 I p( ) e −γ x

I x = 1
2

I p −
E p

Z 0
⎛
⎝⎜

⎞
⎠⎟
eγ x + 1

2
I p +

E p

Z 0
⎛
⎝⎜

⎞
⎠⎟
e −γ x

E p = C1

I p = 1
Z 0

−C 2( )

The transmission line equations

 
Ex = C1 coshγ x + C 2 sinhγ x( )

 
I x = 1

Z 0
−C1 sinhγ x − C 2 coshγ x( )

!
"

" ## =
=!

!
"

" ## =
=!
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If we choose a reference system where the 𝑥 coordinate is positive 
when increasing from the right to the left end of the line (see the 
reference 𝑥'  on slide 6), the solutions of the transmission line 
equations are the same with a change of variable – 𝑥 in the place of 
𝑥. Therefore, we have:

4𝐸& = ̅𝐶#cosh𝛾̅𝑥 + ̅𝐶$sinh𝛾̅𝑥
&('& 4𝐸& = ̅𝐶#cosh𝛾̅𝑥 − ̅𝐶$sinh𝛾̅𝑥

̅𝐼& =
1
𝑍̅%

− ̅𝐶#sinh𝛾̅𝑥 − ̅𝐶$cosh𝛾̅𝑥
&('& ̅𝐼& =

1
𝑍̅%

̅𝐶#sinh𝛾̅𝑥 − ̅𝐶$cosh𝛾̅𝑥

and
4𝐸& = 6𝐾#𝑒)*& + 6𝐾$𝑒')*&

&('& 4𝐸& = 6𝐾#𝑒')*& + 6𝐾$𝑒)*&

̅𝐼& =
1
𝑍̅%

−6𝐾#𝑒)*& + 6𝐾$𝑒')*&
&('& ̅𝐼& =

1
𝑍̅%

−6𝐾#𝑒')*& + 6𝐾$𝑒)*&

In this case, the boundary conditions for 𝑥 = 0 are:

The transmission line equations

Ex
x = 0

=Ea I x
x = 0

= I a
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The solutions expressed in terms of complex exponentials are:

 

or by using the hyperbolic functions:

  

Taking into account the first two equations expressing the solution of 
the transmission line equations with exponential functions, we can 
see that both voltage and current distributions are composed by two 
terms. The first one, proportional to 𝑒)*& is called direct wave: it is 
increasing towards the positive x-coordinate. The second term, 
proportional to 𝑒')*& is called inverse wave: it is decreasing towards 
the positive x-coordinate.      

Ex =
1
2
Ea +Z 0 I a( ) e γ x + 1

2
Ea −Z 0 I a( ) e −γ x

I x =
1
2

I a +
Ea

Z 0
⎛
⎝⎜

⎞
⎠⎟
e γ x + 1

2
I a −

Ea

Z 0
⎛
⎝⎜

⎞
⎠⎟
e −γ x

 Ex = Ea coshγ x + Z 0 I a sinhγ x

 
I x = I a coshγ x + Ea

Z 0
sinhγ x

The transmission line equations
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Ex =
1
2
Ea +Z 0 I a( ) e γ x + 1

2
Ea −Z 0 I a( ) e −γ x

I x =
1
2

I a +
Ea

Z 0
⎛
⎝⎜

⎞
⎠⎟
e γ x + 1

2
I a −

Ea

Z 0
⎛
⎝⎜

⎞
⎠⎟
e −γ x

Terms
proportional to 
        à direct wavee γ x

Terms
proportional to 
        à inverse wavee −γ x

Let us consider the solution of the transmission line equations as:

again, we can see that voltage and current distributions are 
composed by two terms: the first one, proportional to 𝑒)*&, is called 
direct (stationary) wave. The second term, proportional to 𝑒')*&, is 
called inverse (stationary) wave.  

Ex =
1
2
Ea +Z 0 I a( ) e γ x + 1

2
Ea −Z 0 I a( ) e −γ x

I x =
1
2

I a +
Ea

Z 0
⎛
⎝⎜

⎞
⎠⎟
e γ x + 1

2
I a −

Ea

Z 0
⎛
⎝⎜

⎞
⎠⎟
e −γ x



17

By referring to the previous solutions, we define:

Therefore, the voltage in a generic point of the line in the 𝑥 -
coordinate can be calculated as:

In other words, it is given by the superposition of the direct and the 
inverse stationary waves associated to the chosen boundary 
conditions.
The same considerations are also valid for the current distribution: 
       

Ed =
Ea +Z 0 I a

2

Er =
Ea −Z 0 I a

2

Ex = Ed e γ x + Er e −γ x

I x = Ed

Z 0
e γ x − Er

Z 0
e −γ x

The transmission line equations



18The transmission line equations

Ex = Ed e γ x + Er e −γ x

Ex = Ed e γ x + Er e −γ x

Ex = Ed e γ x + Er e −γ x

Ex = Ed e γ x + Er e −γ x

Ex = Ed e γ x + Er e −γ x

Ex = Ed e γ x + Er e −γ x

Ex = Ed e γ x + Er e −γ x

It should be noted that the term of the inverse wave may be zero in the case 
of an infinitely long line. This result is physically correct because, for 𝑥 = ∞, we 
have null electric and magnetic fields, therefore $𝐸! = 0 , ̅𝐼! = −

"#!
"$"
= 0 .

We will see later that an infinitely long line may be realized in practice for 
specific boundary conditions.

Graphical interpretation 
of the superposition given 
by the direct and inverse 
stationary waves: it 
identifies the operating 
conditions of the line 
expressed by the voltage 
and current phasors 
profiles along the line (i.e., 
as function of 𝑥).



19The transmission line equations
Visual interpretation of stationary waves



20The transmission line equations
Let us consider an infinitely long line (we will see later that an infinitely long line 
may be realized in practice for specific boundary conditions).

x→∞
coshγ x→ sinhγ x

and Ex → 0 (null field for 𝑥 → ∞)

 Ex = E p coshγ x − Z 0 I p sinhγ x → Ep −Z0 I p =0

Therefore, by using the solution of the transmission line equations with complex 
exponentials and the orientation 𝑥%, we have:

1
2
Ep +Z0 I p( ) = Ep

1
2
I p +

Ep
Z0

⎛

⎝
⎜

⎞

⎠
⎟ = I p

 
Ex = Epe

−γ x = Epe
−αxe− jβx

Ix = I pe
−γ x = I pe

−α xe− jβx

Ex = 1
2
E p −Z 0 I p( ) eγ x + 1

2
E p +Z 0 I p( ) e −γ x

I x = 1
2

I p −
E p

Z 0
⎛
⎝⎜

⎞
⎠⎟
eγ x + 1

2
I p +

E p

Z 0
⎛
⎝⎜

⎞
⎠⎟
e −γ x

→

→



21The transmission line equations
Therefore, if we consider an infinitely long line, the voltage and current phasors 
will progressively attenuate (𝑒&'() and rotate (𝑒&)*() along the 𝑥 coordinate of 
the line.

Ep e
−α x The graph shows the 

instantaneous voltage 
values along the line for 
two time instants ta and ta.

Obviously, the wavelength 
𝜆 will be difficult to 
observe in practive since, 
as see, for a transmission 
line operating at 50 Hz it is 
in the order of thousands 
of km.

ta tb

e(t)



Outline
The transmission line equations

The line two-port circuit

Active-reactive power flow 
expressions in transmission lines

Characteristic and natural power

The Baum-Perrine diagram

Ferranti effect

Final remarks

22



23
In power systems studies, we may not be interested in knowing the profiles of 
voltages and currents along the line but rather the link between voltages 
and currents at both ends of the line. Therefore, it is interesting to verify if we 
can represent a phase of the line by a passive two-port equivalent with 
linear elements. The transfer matrix is this case must have the following form:

E p = AEa + B I a

I p = CEa + D I a

L

!"

!"

!"

!"

L

!"

!"

!"

!"









!"
#A

a) b)

Single-phase of a line (𝑎) represented by a two-port equivalent (𝑏).

The line two-port circuit



The expressions for the four constants               can be obtained by 
using the solution of the transmission line equations written for the 
orientation 𝑥' and imposing 𝑥 = 𝐿 

      

The four constants that are dependent on   and    are called 
auxiliary constants of the line.      

24

Observation: it is important to note that a transmission line is a system 
with two degrees of freedom. Namely, it is characterized by two 
independent relationships of the four variables of interest (voltages 
and currents) that allow us to assess the electrical state of the 
network. If we consider our system with two inputs,          and two 
outputs,           variables it is possible to obtain the parameters of the 
matrix coefficients               .

E p , I p( )
Ea( , Ia )

A,B,C,D

γ !!

The line two-port circuit

E p = AEa + B I a

I p = CEa + D I a

 Ex = Ea coshγ x + Z 0 I a sinhγ x

 
I x = I a coshγ x + Ea

Z 0
sinhγ x

x=L  

A = D = cosh γ L

B = Z 0 sinhγ L

C = 1
Z 0

sinhγ L

⎧

⎨

⎪
⎪

⎩

⎪
⎪

A,B,C,D
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Mathematically, we have that 𝐴̅ = 6𝐷 and that 𝐴̅6𝐷 − 4𝐵 ̅𝐶 = 1.
This last is the principle of reciprocity of two-port equivalent circuits.
We recall that it must hold if the two-port circuit is composed by 
passive constant elements, and it does not contain amplifiers. 

It is therefore necessary, and sufficient, to know only two of the four 
auxiliary constants to determine the two-port equivalent.

It should be emphasized that the two-port model can not determine 
the shape of the voltage and current across the line but only the 
(linear) link between voltages and currents at the beginning and at 
the end of the line.

The line two-port circuit
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The auxiliary constants can be interpreted as follows.
§ For the line in ‘open-circuit’              we have:

§ For the line in ‘short-circuit’   we have:   

Then, we can provide the following interpretations of the auxiliary 
constants:
§ Constant 𝐴̅ is defined as the ratio of the voltage in the input and 

the one in the output of the line in ‘open-circuit’ (or, as the ratio of 
the current in the input and the one in the output of the line in 
‘short-circuit’). This constant is a dimensionless number and the 
following nomenclature will be used: 

                                                                  or

I a = 0( )

Ea = 0( )

E p = AEa , I p = CEa

E p = B I a , I p = A I a

a1 + j a 2 a1 <1 ; a 2 <<1( ) Ae j αA

The line two-port circuit
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§ Constant 4𝐵 is defined as the ratio between the voltage at the line 
start divided by the current at the line end when it is in ‘short-
circuit’.  It is, therefore, an impedance.

                                                                      or  

Observation: as we will see later, this constant is quite close to the 
total longitudinal impedance of the line: 4𝐵 ≈ ̅𝑧𝐿 = 𝑍̅.

§ Constant ̅𝐶 is defined as the ratio between the current at the line 
start divided by the voltage at the line end when it is in ‘open-
circuit’. It is, therefore, an admittance.

                       or

Observation: as we will see later, this constant is quite close to the 
total shunt admittance of the line: ̅𝐶 ≈ 4𝑦𝐿 = 4𝑌. Furthermore, for actual 
lines, 𝑐# is close to zero.

b1 + j b2 b1 ≈ r ⋅ L = R ; b2 ≈ x ⋅ L = X( ) !"#! β

!" !"! + !"#! γ

The line two-port circuit
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It is possible to infer the four auxiliary constants through the 
hyperbolic functions used for their definition. We firstly define the 
global parameters of the line (with L the overall  length of the line).

Total longitudinal line impedance:

Total transversal line admittance:

Then, we have:

Z = z L

Y = yL

γ L = zy( )L = Z
1
2 ⋅Y

1
2

Z 0 =
z
y

⎛

⎝⎜
⎞

⎠⎟
= zL

yL
⎛

⎝⎜
⎞

⎠⎟
= Z

1
2 ⋅Y

−1
2

The line two-port circuit
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It is interesting to write the Taylor expansion of the previous equations 
to determine simplified line models that are function of the line type.

               

 

The terms of the series expansion to be kept depend on the desired 
approximation of the line parameters in relation with the importance of 
the line and, above all, as a function of the importance of terms with 
the factor 𝑍̅+ 4𝑌+. To give an idea, the factor 𝑍̅ 4𝑌 = ̅𝑧 4𝑦𝐿$ depends on the 
square of the line length and, for overhead lines operating at 50	𝐻𝑧,
̅𝑧 4𝑦 ≈ 10'#$ #

,! . So, the terms to be kept depend on: (i) the line length, 
(ii) the line rated voltage (since it weights the importance of the shunt 
admittance 4𝑌) and (iii) the line type overhead vs cable, since it has an 
influence on the magnitude of 4𝑌 (cables have larger 4𝑌).

 

A = coshγ L = 1 + ZY
2!

+ Z
2
Y
2

4!
+ .....

B = Z 0 sinhγ L= Z 1 + ZY
3!

+ Z
2
Y
2

5!
+ .....

⎛

⎝
⎜

⎞

⎠
⎟

C = 1
Z 0

sinhγ L = Y 1 + ZY
3!

+ Z
2
Y
2

5!
+ .....

⎛

⎝
⎜

⎞

⎠
⎟

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

The line two-port circuit
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It is also worth observing that the modules of the total impedances 
and admittances 𝑍̅  and 4𝑌 of the line depend on the line length 
beyond the specific value of 𝐿. Indeed, when a line is long this 
means that the voltage is high. Furthermore, if a line is composed by 
a coaxial cable, its length is generally shorter than the corresponding 
overhead line with the same nominal voltage (this is because the 
coaxial cables produce a large amount of reactive power). In 
summary, the terms to be kept in the Taylor expansions must account 
for: the line length, the line nominal voltage and the line type 
overhead or cable.

In what follows typical Taylor series expansions are given for actual 
lines.

The line two-port circuit
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§ Short lines:

 L ≤ 50 km V ≤ 30 kV   for overhead lines;   
 L ≤ 03 km V ≤ 20 kV   for cables.

In this case we can neglect all the transversal parameters and so:

Note that shunt capacitances are larger in coaxial cables than the 
corresponding overhead lines. For this reason, in short overhead lines, 
we may neglect the shunt parameters for line lengths larger than the 
corresponding cables ones.

! " # A= = =! "# #

The line two-port circuit
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§  Medium-length lines
 50 ≤ L ≤ 100 km  30 ≤ V ≤ 66 kV  for overhead 
lines;   
 03 ≤ L ≤ 10 km  20 ≤ V ≤ 60 kV  for cables.

The Taylor expansion stops in correspondence of the first term:

§  Long lines
 100 ≤ L ≤ 300 km 66 ≤ V ≤ 132 kV   for overhead 
lines;
 10 ≤ L ≤ 30 km  60 ≤ V ≤ 66 kV  for cables.

The expansion stops in correspondence of the second term:

! " # A B= = =! " "









+=








+=+=

!
"#

!
"#

$
" !"!#!""A!"B

The line two-port circuit
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§ For lines with nominal voltage between 132 kV and 380 kV we can 
use all the terms of the Taylir expansion shown on slide 28.

§ For lines with nominal voltage ≥ 380 kV, we have to use the 
hyperbolic expressions with no approximations.

The typical parameters of a transmission line are reported on slide 33. 

Important observation: for load flow calculation, it is worth reminding 
that any electrical element described by a two-port equivalent 
passive and reciprocal, can be replaced by equivalent 𝑇  or Π 
circuits (see slide 34).     

The line two-port circuit
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Quantity 

Overhead 
 

Cable 
 

 20   KV 
(1) 

380   KV 
(2) 

20   KV 
(3) 

380   KV 
(4) 

 Resistance r [Ω · m-1] 0 268 10 3, ⋅ −  
(5) 

0 020 10 3, ⋅ −  
(5) 

0 0995 10 3, ⋅ −  
(6) 

0 025 10 3, ⋅ −  
(6) 

 Conductance g [S · m-1] ⎯ 0 007 10 9, ⋅ −  0 285 10 9, ⋅ −  0 194 10 9, ⋅ −  

 Inductance l [H · m-1] 11 10 6, ⋅ −  0 853 10 6, ⋅ −  0 309 10 6, ⋅ −  0 710 10 6, ⋅ −  

 Reactance x [Ω · m-1] 0 345 10 3, ⋅ −  0 268 10 3, ⋅ −  0 0971 10 3, ⋅ −  0 223 10 3, ⋅ −  

 Capacitance c [F· m-1] 10 7 10 12, ⋅ −  13 7 10 12, ⋅ −  302 10 12⋅ −  266 10 12⋅ −  

 Susceptance b [S · m-1] 3 36 10 9, ⋅ −  4 30 10 9, ⋅ −  94 9 10 9, ⋅ −  83 6 10 9, ⋅ −  

 

γ  
 

Att. Const. [m-1]  
0 393 10 6, ⋅ −  

 
0 041 10 6, ⋅ −  

 
1 42 10 6, ⋅ −  

 
0 247 10 6, ⋅ −  

Phase Const.[° · m-1]  
0 0659 10 3, ⋅ −

 

 
0 0615 10 3, ⋅ −  

 
0 192 10 3, ⋅ −  

 
0 248 10 3, ⋅ −  

 

Zo 
 

Module         [Ω-1] 361 250 38 52 

Phase      [°] -18.92 -2.09 -22.65 -3.13 

(1) Line with Cu conductors 70 mm2 
(2) Line with AlAcr diameter 31,5 mm 
(3) Tri-polar Cu cable conduttors 240 mm2, insulation with EPR 
(4) Tri-polar Cu cable 1200 mm2,  insulation with fluid oil 
(5) Temperature of 20°C                (6)Temperature of 85°C 

 

Typical transmission line parameters for medium and high voltage overhead 
and cable lines.

The line two-port circuit
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Circuit representation of transmission lines using 𝑇 or Π equivalent circuits.

The line two-port circuit
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Active-reactive power flow expressions in 
transmission lines
The expression of the apparent power at the end of the line reads:

and since

we can assume that $𝐸+  is placed on the real axis (the modeler has the 
freedom to choose a reference phasor). Furthermore, we define 𝜃 as the 
electrical angle between $𝐸+ and $𝐸,: 𝜃 = 𝑎𝑟𝑔 $𝐸, − $𝐸+ . Therefore:

Sa = Pa + jQa = 3Ea I a

⇒
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3EaEp

B
cos(βB −θ )− 3Ea

2 A
B

cos(βB −α A )+ j
3EaEp

B
sin(βB −θ )− 3Ea

2 A
B

sin(βB −α A )
⎡
⎣⎢

⎤
⎦⎥
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Active-reactive power flow expressions in 
transmission lines
From the previous expression of the apparent power, we can extrapolate 
the real and imaginary parts corresponding to the active and reactive 
power flows at the line arrival:

By following a similar procedure, we can derive the active and reactive 
power flows at the line departure:

 
Pa =

3EaEp

B
cos(βB −θ )− 3Ea

2 A
B

cos(βB −α A )

 
Qa =

3EaEp

B
sin(βB −θ )− 3Ea

2 A
B

sin(βB −α A )

 
Pp = −

3EaEp

B
cos(βB +θ )+ 3Ep

2 A
B

cos(βB −α A )

 
Qp = −

3EaEp

B
sin(βB +θ )+ 3Ep

2 A
B

sin(βB −α A )
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Active-reactive power flow expressions in 
transmission lines
If the line is lossless and without shunt admittance, the equations that we 
wrote become even simpler (                                              ):

Pp = Pa =
3EpEa

X
sinθ

Qa =
3Ea

X
Ep cosθ − Ea( )

Qp =
3Ep

X
Ep − Ea cosθ( )

α A = 0, A = 1,βB =
π
2
,B = jX
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Let us suppose to supply a load via a line and the load has an 
impedance equal to the line’s characteristic impedance 𝑍̅%.
In these conditions, the power supplied to the load is called 
characteristic power and can be computed as follows:

S0,a = P0,a + jQ0,a = 3Ea I a = 3Ea
Ea
Z a

=

=
Va
2

Z0 cosψ − j sinψ( ) =
Va
2

Z0
cosψ + j sinψ( )

Observation: the argument Ψ of Z0 is negative (see the table on slide 
33). Therefore, the characteristic power has a reactive power that is 
negative.
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Let us suppose that the line is lossless: r = g = 0 à

Z0 =
r + jω l '
g + jωc '

= l '
c '

In these ideal conditions, the characteristic impedance is a real number 
called natural or surge impedance.
Also, the delivered power to the load is only real (i.e., active power) 
and it is called natural power:

S0,a = P0,a =
Va
2

Z0
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In these conditions we have that the voltage and current profiles 
obtained for the orientation 𝑥', have an easier expression:

  

Ex =
1
2

Ea + Z0Ia( )eγ x + 1
2

Ea − Z0Ia( )e−γ x = 1
2

Ea + Z0Ia( )eγ x = Eae
γ x

Ix =
1
2

Ia +
Ea

Z0

⎛

⎝⎜
⎞

⎠⎟
eγ x + 1

2
Ia −

Ea

Z0

⎛

⎝⎜
⎞

⎠⎟
e−γ x = 1

2
Ia +

Ea

Z0

⎛

⎝⎜
⎞

⎠⎟
eγ x = Iae

γ x

Ex
Ix

=
Eae

γ x

Iae
γ x = Z0
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Furthermore, we have that the following equality holds ∀𝑥: 
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For 𝑥 = 𝐿, and for the orientation 𝑥', we have that |4𝐸& &(- = 4𝐸" and 
|̅𝐼& &(- = ̅𝐼", therefore, since 

./"
̅1"
= 𝑍̅% also for 𝑥 = 𝐿, we get the same result 

of slide 20: 

In other words, a line supplying a load equal to its characteristic 
impedance has the same voltage and current profiles of the same line 
that is infinitely long.
Pay attention that this statement is true for 0 ≤ 𝑥 ≤ 𝐿.

Ex = 1
2
E p −Z 0 I p( ) eγ x + 1

2
E p +Z 0 I p( ) e −γ x

I x = 1
2

I p −
E p

Z 0
⎛
⎝⎜

⎞
⎠⎟
eγ x + 1

2
I p +

E p

Z 0
⎛
⎝⎜

⎞
⎠⎟
e −γ x



Furthermore, the condition

  

Ex

Ix

=
Eae

γ x

Iae
γ x = Z0

Involves that voltage and the current at each generic position x of the 
line are characterised by a ratio and phase displacement that constant.
Additionally, we have that:

  

Ex

Ix

= Z0 =
l '
c '

→ωc 'dxEx
2 =ω l 'dxIx

2

Namely, for a lossless line delivering the natural power, at each position 
x, the reactive power generated by the line infinitesimal shunt 
capacitance 𝜔𝑐’𝑑𝑥𝐸&$	is equal to the reactive power absorbed by the 
line infinitesimal series inductance 𝜔𝑙’𝑑𝑥𝐼&$.
In other words, the line is reactive balanced.
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Furthermore, for a lossless line delivering the natural power we have:

Ex = Eae
γ x = Eae

jβx

Ix = Iae
γ x = Iae

jβx

Namely, voltage and current phasors along the line are simply rotating 
without any attenuation.

For high voltage lines, the parameters 𝑟, 𝑔	are usually negligible with 
respect to 𝜔𝑙’ and 𝜔𝑐’ (see slide 33 for 380 kV lines). Therefore, when one 
of these lines operates nearby the characteristic power, it is also true 
that it is operating close to the natural power. For medium voltage lines 
this is observation is not true.
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Rated voltage
Vn[kV]

Characteristic 
impedance
Z0 [Ohm]

Natural power
P0 [MW]

20 400 1
50 400 6
132 400 44
220 390 124
380 260 560
700 240 2000
1000 240 4000
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Step-by-step construction of the diagram
The Baum-Perrine diagram allows to graphically interpret the link between the 
line active/reactive power flows and the voltage phasors at line terminals.
In what follows, we start by fixing the voltage phasor $𝐸+.
Step by step Construction:
1. Draw the voltage at the end of the line $𝐸+. Since it is our reference, we 

place it on the real axis.
2. Draw the current phasor at the end of the line ̅𝐼+.
3. Draw 𝐴̅ $𝐸+, this corresponds to the voltage at the start if the line is in no-

load conditions.
4. Name the end of 𝐴̅ $𝐸+ as the point 𝑀. Note that this point only depends on 

the physical characteristics of the line (lengths, voltage level, etc) and not 
on the loading conditions.

The Baum-Perrine diagram



50The Baum-Perrine diagram
Step-by-step construction of the diagram

4. From 𝑀 draw $𝐵 ̅𝐼+ and obtain $𝐸, since $𝐸, = 𝐴̅ $𝐸+ + $𝐵 ̅𝐼+.
5. Name the end of $𝐸, as the point 𝑁. From 𝑁, draw two axis, one forming 

an angle of 𝜑 with $𝐵 ̅𝐼+, and one perpendicular.
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Step-by-step construction of the diagram

7. The two axes have the following characteristics:
• They do not depend on the loading conditions of the line.
• The projections of 𝑁 onto the two axes are proportional to the active 

(𝑃+) and reactive (𝑄+) powers of the line delivered at the arrival.



52The Baum-Perrine diagram
Animation – Fixed Axes



53The Baum-Perrine diagram
Animation – Constant Active Power



54The Baum-Perrine diagram
Animation – Constant Reactive Power
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Line characteristics

L=

Line load

§ No-load: Ep<Ea (Ferranti 
effect)

§ Pa+jQa (operation point R) 
à voltage drop = 21%

§ Pa (operation point R’)
à voltage drop = 6%

§ To obtain a null voltage 
drop (still delivering Pa) we 
need the phasor Ep in R”. 
This corresponds having a 
capacitive load that 
generates the reactive 
power ∆Q=RR” where the 
fraction RR’ is absorbed by 
the load while the fraction 
R’R” is injected by the line 
and is used to compensate 
the voltage drop produced 
by the transfer of active 
power to the load.
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The Ferranti effect refers to the phenomenon where the voltage at the 
end of a (long, high-voltage) transmission line is higher than the voltage 
at its start, particularly under light load or no-load conditions.

This phenomenon is of interest to:
1. Model the behavior of the line when it is energized after it has been 

kept offline due to maintenance reasons so, the line load is zero.
2. Understand criticalities occurring during the restoration process of a 

power system following a black out. Indeed, after a black out, the 
grid/line loads are zero.

3. Quantify the reactive power produced by the line when it is in no-
load conditions.
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Let us recall the solutions of the transmission line equations for the 
reference 𝑥' and using hyperbolic functions:

4𝐸& = 4𝐸2 cosh 𝛾̅𝑥 + 𝑍̅% ̅𝐼2 sinh 𝛾̅𝑥

̅𝐼& = ̅𝐼2 cosh 𝛾̅𝑥 +
4𝐸2
𝑍̅%
sinh 𝛾̅𝑥

Let us assume the line to be open at the end, i.e. ̅𝐼2 = 0 to study the 
relation between the voltage at the start and the end of the line, we 
obtain:

4𝐸" = 4𝐸2 cosh 𝛾̅𝐿

̅𝐼" =
4𝐸2
𝑍̅%
sinh 𝛾̅𝐿 =

4𝐸" sinh 𝛾̅𝐿
𝑍̅% cosh 𝛾̅𝐿

The Ferranti effect 58



From the solution of the transmission line equations with reference 𝑥!: 
4𝐸& = 4𝐸" cosh 𝛾̅𝑥 − 𝑍̅% ̅𝐼" sinh 𝛾̅𝑥

we replace the expression of ̅𝐼" obtained in the previous slide:

4𝐸& = 4𝐸" cosh 𝛾̅𝑥 − 𝑍̅%
4𝐸" sinh 𝛾̅𝐿
𝑍̅% cosh 𝛾̅𝐿

sinh 𝛾̅𝑥 = 4𝐸" cosh 𝛾̅𝑥 − 4𝐸"
sinh 𝛾̅𝐿
cosh 𝛾̅𝐿

sinh 𝛾̅𝑥

=
4𝐸"

cosh 𝛾̅𝐿
cosh 𝛾̅𝑥 cosh 𝛾̅𝐿 − sinh 𝛾̅𝐿 sinh 𝛾̅𝑥

=
4𝐸"

cosh 𝛾̅𝐿 cosh 𝛾̅(𝐿 − 𝑥)

We have obtained an expression that contains only the voltage along 
the line 4𝐸& and the voltage at the beginning of the line 4𝐸".
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4𝐸& =
4𝐸"

cosh 𝛾̅𝐿 cosh 𝛾̅(𝐿 − 𝑥)

And, equivalently, for the current:

̅𝐼& =
4𝐸"

𝑍̅% cosh 𝛾̅𝐿
sinh 𝛾̅(𝐿 − 𝑥)

If the line is also lossless (𝑟 = 𝑔 = 0), we have:

𝛾̅ = 𝑟 + 𝑗𝜔𝑙 𝑔 + 𝑗𝜔𝑐 = ±𝑗𝜔 𝑙𝑐; 𝑍̅% =
𝑟 + 𝑗𝜔𝑙
𝑔 + 𝑗𝜔𝑐

=
𝑙
𝑐

and if 𝛾̅ has only the imaginary component, cosh x = cos x, so we get:

4𝐸& =
4𝐸"

cos𝜔𝐿 𝑙𝑐
cos𝜔(𝐿 − 𝑥) 𝑙𝑐

̅𝐼& =
4𝐸"

𝑙
𝑐 cos𝜔𝐿 𝑙𝑐

sin𝜔(𝐿 − 𝑥) 𝑙𝑐
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$𝐸( =
$𝐸,

cos𝜔𝐿 𝑙𝑐
cos𝜔(𝐿 − 𝑥) 𝑙𝑐 	 ̅𝐼(=

$𝐸,
𝑙
𝑐 cos𝜔𝐿 𝑙𝑐

sin𝜔(𝐿 − 𝑥) 𝑙𝑐

The last two equations show that for an unloaded line:
§ $𝐸( is in phase with $𝐸,, and ̅𝐼( is in leading quadrature with $𝐸( at every point 

along the line.
§ The RMS value of the voltage and current varies along the line according to 

a cosine and sine laws, respectively.
§ There are nodes, i.e. points where the voltage is permanently zero) and 

antinodes, i.e. points where the voltage is maximum. A similar situation 
applies to the current.

§ Obviously, the distance between two points where $𝐸( (or ̅𝐼() is identical is 
equal to the wavelength 𝜆. Indeed, we have that the argument of the cos 
and sin  functions has to be equal to 2𝜋, namely: 𝜔𝜆 𝑙𝑐 = 2𝜋, so 𝜆 = -.

/ 01
.
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§ For the case under consideration, antinodes and nodes of $𝐸( and ̅𝐼( are 
spaced by 𝜆/2;

§ Antinodes of $𝐸( are spaced from the nearest antinodes of ̅𝐼( by 𝜆/4;
§ In high-voltage transmission lines (𝐿	 < 	𝜆/4), in the case of lossless lines, we 

have (recall that 𝜆 = -.
/ 01

	):

$𝐸+ =
$𝐸,
𝐴 =

$𝐸,
cos𝜔𝐿 𝑙𝑐

=
$𝐸,

cos 2𝜋 𝐿𝜆
Thus, for 0 ≤ 	𝐿 ≤ 	𝜆/4 (𝜆/4 = 1500 km), it implies that 0 ≤ 	2𝜋 2

3
≤ .

-
	⇒ 	cos 2𝜋 2

3
decreases from 1 to 0, and thus the voltage at the (open) end of the line is 
always larger than the voltage (applied) at the origin.

Since, in practice, actual lengths of power systems lines are way shorter than 
1500 km, we always have this condition when the line is unloaded.
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§ If we consider the losses, for 𝐿 → 3
4
, $𝐸+ 	still increases significantly, and the over-

voltages at the end of the line can be much larger than those compatible 
with the line’s insulation. This phenomenon was first observed in 1887 during 
the installation of underground cables in London by Sebastian Ziani de 
Ferranti on 10 kV AC power distribution systems, and thus it is called the 
Ferranti effect.

§ The following table shows the overvoltage factor ##
#$
= 5

6
	 for various lengths of 

a typical high voltage line at 50 Hz when unloaded.

63

In practice, to avoid such issues, overhead lines at 50 Hz should not exceed a 
length of 600-700 km (500-600 km at 60 Hz).

The Ferranti effect
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Final Remarks 65

1. Line with no load: $𝐸+ > $𝐸, due to 
the Ferranti effect. The line behaves 
essentially as a capacitor since the 
value of shunt capacitive 
impedances is way bigger than the 
series line impedance.

2. Lien with purely capacitive load: the 
effect of the previous case is 
amplified. As a result, $𝐸+ ≫ $𝐸, . This 
condition should be avoided.

3. Line with purely inductive load:
If 𝐼2 = 𝐼1, then $𝐸+ ≈ $𝐸,
If 𝐼2 > 𝐼1, then $𝐸+ < $𝐸,
If 𝐼2 < 𝐼1, then $𝐸+ > $𝐸,

Ēp Ēa

Qcap

Īc

Ēp Ēa

Qcap

Q→
cap

Īc Ī →c

LĒp Ēa

Qcap

Qind

Īc ĪL
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4. Line with a purely resistive load 
equal to the characteristic 
impedance 𝑅 = 𝑍7 (assumed real for 
losses line): the voltage drop caused 
by the flow of active power is almost 
compensated by the voltage rise 
due to the flow of capacitive power. 
As a result, $𝐸+  is slightly less than 
$𝐸, .

5. Line with a purely resistive load lower 
than the characteristic impedances 
(assumed real for losses line): the 
active power flow is larger than the 
characteristic one. The voltage drop 
caused by the flow of active power 
is larger than the voltage rise due to 
the flow of capacitive power. As a 
result, $𝐸+ < $𝐸, .

R = |Z0|Ēp Ēa

Qcap

P

Īc ĪR

P

R < |Z0|Ēp Ēa

Qcap

P

Īc ĪR

P
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6. Line with a resistive/inductive load where 𝑅 = 𝑍7: the voltage drop due to 
the flow of active power 𝑃 is approximately compensated by the voltage 
rise due to the flow of capacitive power 𝑄1+,.	The remaining voltage drop is 
due to the flow of inductive power 𝑄89: 	and thus $𝐸+ < $𝐸, .

7. Line with a resistive/capacitive load where 𝑅 = 𝑍7: as in the previous case, 
the effects of 𝑃 and 𝑄1+, are partially compensated. The remaining voltage 
rise is due to the flow of 𝑄1+,; , and therefore $𝐸+ > $𝐸, .
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L |R = Z̄0|Ēp Ēa

Qcap

Qind

P
Īc ĪL ĪR

C |R = Z̄0|Ēp Ēa

Qcap

Q→
cap

P
Īc ĪC ĪR

Final Remarks



68

In transmission lines where the longitudinal inductance is larger 
compared to other parameters, the following power transfer 
mechanisms are predominant (i.e., equations in slide 39):

• the active power flow through an electrical line is linked 
directly to the angle θ (phase difference between the 
voltage phasors in the end and in the beginning of the line);

• the reactive power flow, and its sign, is strictly linked to the 
difference of the voltage magnitudes at the two line 
termnals.

In transmission lines where the parameters have equal weight  (for 
instance in distribution networks where the ratio r/xl’>1) the 
mechanisms that govern active and reactive power flows 
described by the above two bullet points are no longer valid and 
a cross-link between amplitude and angles of the voltage phasors 
at the line terminations and active/reactive power exists meaning 
that equations on slide 38 cannot be approximated.
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