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The fransmission line equations




The transmission line equations n

As seen in the lecture 3.1, the distributed-parameter model of an electrical
line is represented by the figure here below.

Furthermore, we assume that:

1. three-phase line in a sinusoidal steady state conditions;

2. three-phase system symmetrical with the current and balanced with the

voltages;
3. line characterized by a symmetrical structure of conductors.

— joc'dx | E +dE. E

X dx

Iv\o?jel of an electrical line for the representation with distributed parome’rer?.



The transmission line equations n

r is the line resistance in per unit of length: it represents the
longitudinal Joule-effect dissipative phenomena;

« ' is the effective inductance in per unit of length: it represents the
magnetic coupling among the different conductors (it is an
equivalent parameter for a n-conductor line);

« ¢ is the effective capacity in per unit of length: it represents the
electrical coupling among the different conductors and the ground
plane (it is an equivalent parameter for a n-conductor line);

- g is the conductance of the line in per unit of length: it models the
transverse power losses of the line due to (i) the corona effect and
(i) insulation losses (insulators for overhead lines or insulation
materials for coaxial cables).



The fransmission line equations

Thus, we can define two important line parameters:
= The longitudinal impedance in per unit of length:
z=r+jol [Qm_l]

= The transverse admittance in per unit of length:

y=g+ joc' [Sm_l]

Thanks to the representation of sinusoidal quantities in the complex
domain we have:

e(x,t) = E.

and

i(x,t)=1



The transmission line equations n

Let us recall the fransmission lines or telegraphers’ equations derived
in the lecture 3.1.

dE —
£ 47T, =0
dx g
dl _
~+yE =0
dx YEx

In the figure below, the boundary conditions for the current and the
voltage are given along with the two possible orientations of the x-
axis. L is the total line length.
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The transmission line equations

The integration of these last two equations can be obtained by using
the Laplace transform (henceforth denoted as ¢-transform):

In our case we have

(see figure on slide 6 the orientation x*) and the ¢-transform of the
transmission line equations is:

p-Z[Ex:—E pz—Zf[Tx:

pUI.]=1,=-VI[E,_



The fransmission line equations

Using the last equation, we get:

(7=l 24z

p p

That, replaced into p-(|E, |-E ,=-Z([ 1| allows to obtain:

p.z[ﬁx]ﬁPlz[ﬁx]}:EP

~

p P
or.

p* [ E |+2 -7y![E |=p E,

From the last, we can derive the expression for (| E | |:

p-E -1,
P -7y

([E ="




The transmission line equations n

The solution for the current is trivially obtained:

Based on the definition of the line per-unit-length longitudinal
impedance and transverse admittance on slide 5, we can define
the following additional parameters:

= The propagation constant:

;_/: 25; :oc+jﬁ:\/(r+ja)l)(g+ja)c) [m_1:|

= The characteristic impedance:

— zZ r+ jowl'
zf/ ol 1q]
y g+ jaoc




The transmission line equations m

On the basis of the previous parameters, we can rewrite the
?-tranform of voltage as follows:

(B, )= 25T

p -7
and the ¢-tranform of current as:
_ '}7 _
7 A
[T = 0
p’ -7’

The inverse ¢-tranforms of these two last equations can be obtained
by noting that:

f‘l[ P } = coshyx El{ Y } =sinhyx

p2_}72 pz_?2

The expression of the current and voltage as a function of the x
coordinate of the line can be finally obtained specifying the line
initial conditions for x = 0:

E. 0=E, .| =I,

x = x =0



The transmission line equations n

E. = E, coshyx — ZOE sinhy x

I. =1,coshyx — & sinhy x
0
In the case other boundary conditions are used, it is possible to use
the general integral derived from the obtained solution:

E, = (61 coshy x + C» sinhj_/x)

I, = %(—Cl sinhyx — C cosh}_/x)

0

or, is an equivalent form, by replacing functions coshx and sinhx with
the respective definitions:




The transmission line equations n

The constants Ci,C» and K,,K,, are determined based on the
boundary conditions. For example, if we consider the orientation x¥,
the following conditions at the line start and the solution of the
transmission line equations with complex exponentials, we have:

Ex :Ep Ix :}p
=0

x=0 X =

and we obtain: - L

p — Kl + KZ

_ 1 _ _

Ip = —_(_Kl + Kz)
Zy

I
Ky =5 (Ep = Zolp)

_ 1,
Ky =5 (Ep + Zoly)



The transmission line equations n

And the general solution for this orientation and boundary conds is:

- (= E,) ;. 1= E,) 5
I.==|I,—== | + | [,+="|e ™"
2 Zo 2 Zo

or, by using the solutions of the transmission line equations expressed
with coshx and sinhx, we have:

Ci

E. = (a coshy x + C» sinh}_/x) E.

:Ep EP
x=0

I, = —i(—& sinhyx — C» cosh}_/x) 1.

Zo

X =

— _ 1 _
=, I, = 2—0(—62)

and the solution is:

E, = Eycoshyx — Zyl,,sinhyx
I, = I,coshyx — =sinhyx
Zo



The transmission line equations n

If we choose a reference system where the x coordinate is positive
when increasing from the right to the left end of the line (see the
reference x~ on slide 6), the solutions of the transmission line
equations are the same with a change of variable - x in the place of
x. Therefore, we have:

E, = Ccoshyx + Czsmhyxx_z_» E, = Clcoshyx — C,sinhyx
_ 1
Z— (—C;sinhyx — C,coshyx) :I == (Clslnhyx — Cycoshyx)
Zy
and

— S — —  X==X _ — — - —
E,=Ke" +K,e " *"=—FE, = Kje " + K,e"*

_ 1 _ . . x=—x_ 1

L = = (-Rie™ + Kpe 7)== I, = = (—Kie 7% + Kye?™)
0 0

In this case, the boundary conditions for x = 0 are:

=ia

x =0




The fransmission line equations
The solutions expressed in terms of complex exponentials are:

Eo=—(E+Zal) e + (Eo-ZoL) e

- - _a v - Ea ”
Ile Ia+E e”+l l.— e ’"
2 Zo 2

or by using the hyperbolic functions:

E. = E, coshyx + Zo 1, sinhyx

7. = T. coshyx + =% sinhyx
Zo
Taking info account the first two equations expressing the solution of
the tfransmission line equations with exponential functions, we can
see that both voltage and current distributions are composed by two
terms. The first one, proportional to e¥* is called direct wave: it is
increasing towards the positive x-coordinate. The second term,
proportional to e™¥* is called inverse wave: it is decreasing towards
the positive x-coordinate.



The fransmission line equations n
Let us consider the solution of the transmission line equations as:

E. = %(Eﬁz) L)e" + %(Ea-zo L)e 7

- 1(-= E,) - - E, _
I[.=—| l.+= eyx‘|‘l Ia_E e_yx
2 Zo 2 Zo

again, we can see that voltage and current distributions are
composed by two terms: the first one, proportional to e¥*, is called
direct (stationary) wave. The second term, proportional to e 7%, is
called inverse (stationary) wave.

FoglEol) - Y
2
N

Terms Terms
proportional to proportional to
e’ > direct wave ¢7* - inverse wave

Ul BN
Ix:l[la+_ )e“+

0



The fransmission line equations

By referring to the previous solutions, we define:

—_ Ea'l'Z _a

Ei= !
2

Er:Ea_ZOIa
2

Therefore, the voltage in a generic point of the line in the x-
coordinate can be calculated as:

E.=E; e’ + E, "

In other words, it is given by the superposition of the direct and the
inverse stationary waves associated to the chosen boundary
conditions.

The same considerations are also valid for the current distribution:

Eq 5 E,




The transmission line equations

Ex B Ed eyx + -

Graphical interpretation
of the superposition given
by the direct and inverse
stationary waves: it
identifies the operating
conditions of the line
expressed by the voltage
and current phasors
profiles along the line (i.e.,
as function of x).

It should be noted that the term of the inverse wave may be zero in the case
of an infinitely long line. This result is physically correct because, for x = «, we

have null electric and magnetic fields, therefore E, =0, I,=—-=L=

We will see later that an infinitely long line may be realized in practice for
specific boundary conditions.



The fransmission line equations

Visual interpretation of stationary waves

Standing Waves Demo

cK-12



The transmission line equations m

Let us consider an infinitely long line (we will see later that an infinitely long line
may be realized in practice for specific boundary conditions).

X —> o

_ L and £ —0 (null field for x — oo)
coshy x — sinhyx ¥

E. = E,coshyx —Zol sinhyx E ~Z,1 =0

Therefore, by using the solution of the transmission line equations with complex
exponentials and the orientation x*, we have:

OIp) e’ + _(Ep+20jp) e_;x

1l/— — — — — —_ _
2 p p p X p p
_ E ) _ _
1(1 +Tp]:] - ] =Te""'=] e* —]ﬁx
2 p ZO p X p



The transmission line equations n

Therefore, if we consider an infinitely long line, the voltage and current phasors
will progressively attenuate (e~%*) and rotate (e~/#*) along the x coordinate of
the line.

The graph shows the
instfantaneous voltage
values along the line for
two time instants ¢, and ¢,.

Obviously, the wavelength
A will be difficult to
observe in practive since,
as see, for a fransmission
line operating at 50 Hz it is
in the order of thousands
of km.
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The line two-port circuit




The line two-port circuif m

In power systems studies, we may not be interested in knowing the profiles of
voltages and currents along the line but rather the link between voltages
and currents at both ends of the line. Therefore, it is inferesting to verify if we
can represent a phase of the line by a passive two-port equivalent with
linear elements. The transfer matrix is this case must have the following form:

E,=AE.+ Bl,
I[,=CE.+ DI,
I_P a) I_a [_p b) [_a
A A A A
A C
E, E E, B D E

L -

L — -
-t —

—
—

Single-phase of a line (a) represented by a two-port equivalent (b).



The line two-port circuit m

Observation: it is important fo note that a fransmission line is a system
with two degrees of freedom. Namely, it is characterized by two
independent relationships of the four variables of interest (voltages
and currents) that allow us to assess the electrical state of the
network. If we consider our system with two inputs, (l_fpj,,) and two
outputs, (E,.1,) variables it is possible to obtain the parameters of the
matrix coefficients A,B,C,D.

The expressions for the four constants A,B,C,D can be obtained by
using the solution of the transmission line equations written for the
orientation x~ and imposing x = L

E. = E.coshyx + Zol. sinhyx — == A= D =cosh yL
B

NS

_ - E,
I. = I, coshyx + —

x:

The four constants that are dependent on ¥ and ZO are called
auxiliary constants of the line.



The line two-port circuif m

Mathematically, we have that A = D and that AD — BC = 1.

This last is the principle of reciprocity of two-port equivalent circuits.
We recall that it must hold if the two-port circuit is composed by
passive constant elements, and it does not contain amplifiers.

It is therefore necessary, and sufficient, to know only two of the four
auxiliary constants to determine the two-port equivalent.

It should be emphasized that the two-port model can not determine
the shape of the voltage and current across the line but only the
(linear) link between voltages and currents at the beginning and at
the end of the line.



The line two-port circuif m

The auxiliary constants can be interpreted as follows.
= For the line in ‘open-circuit’ (L = 0) we have:

Ep = ZECZ N ;p = EEa

= For the line in ‘short-circuit’ (E, - 0) we have:
B

Then, we can provide the following interpretations of the auxiliary

constants:

= Constant 4 is defined as the ratio of the voltage in the input and
the one in the output of the line in ‘open-circuit’ (or, as the ratio of
the current in the input and the one in the output of the line in
‘'short-circuit’). This constant is a dimensionless number and the
following nomenclature will be used:

a, + ja, (a1<1 ; a2<<1) or Ae’*®



The line two-port circuif

= Constant B is defined as the ratio between the voltage at the line
start divided by the current at the line end when it is in ‘short-
circuit’. It is, therefore, an impedance.

b +jb, (by=r-L=R ; by=x-L=X) or Be'”

Observation: as we will see later, this constant is quite close to the
total longitudinal impedance of the line: B ~ ZL = Z.

= Constant C is defined as the ratio between the current at the line
start divided by the voltage at the line end when it is in ‘open-
circuit'. It is, therefore, an admittance.

c+jc, or (Ce'’c
Observation: as we will see later, this constant is quite close to the

total shunt admittance of the line: C =~ yL = Y. Furthermore, for actual
lines, ¢y is close to zero.



The line two-port circuif m

It is possible to infer the four auxiliary constants through the
hyperbolic functions used for their definition. We firstly define the
global parameters of the line (with L the overall length of the line).

Total longitudinal line impedance:
Z=7L
Total fransversal line admittance:

Y=5L

Then, we have:

h
Il
N||
~I
N | =

B
N—
Il
N||
"<1|I

N | —



The line two-port circuif m

It is interesting to write the Taylor expansion of the previous equations
to determine simplified line models that are function of the line type.

Z:cosh}_/L:1+ Y + + e

N

B=Zo sinh}_/L=Z[l+ T + ..

0 3! 5!

The terms of the series expansion to be kept depend on the desired
approximation of the line parameters in relation with the importance of
the line and, above all, as a function of the importance of terms with
the factor Z"Y™. To give an ideq, the factor ZY = zyL? depends on the
square of the line length and, for overhead lines operating at 50 Hz,

|1zy| =~ 10‘12[ ] So, the terms to be kept depend on: (i) the line length,

(i) the line rated voltage (since it weights the importance of the shunt
admittance Y) and (i) the line type overhead vs cable, since it has an
influence on the magnitude of Y (cables have larger Y).

—2 —2
Ez_Lsinh;L:?[l zy ZY ]



The line two-port circuif

It is also worth observing that the modules of the total impedances
and admittances Z and Y of the line depend on the line length
beyond the specific value of L. Indeed, when a line is long this
means that the voltage is high. Furthermore, if a line is composed by
a coaxial cable, its length is generally shorter than the corresponding
overhead line with the same nominal voltage (this is because the
coaxial cables produce a large amount of reactive power). In
summary, the terms to be kept in the Taylor expansions must account
for: the line length, the line nominal voltage and fthe line type
overhead or cable.

In what follows typical Taylor series expansions are given for actuadl
ines.



The line two-port circuit

= Short lines:

L <50 km V <30 kV for overhead lines;
L <03 km V <20 kV for cables.

In this case we can neglect all the fransversal parameters and so:

A=1, B=Z , C=0

Note that shunt capacitances are larger in coaxial cables than the
corresponding overhead lines. For this reason, in short overhead lines,
we may neglect the shunt parameters for line lengths larger than the
corresponding cables ones.



The line two-port circuit

=  Medium-length lines

50<L<100km 30V <66 kV for overhead
lines;

03<L<10km 20V <60 kV for cables.
The Taylor expansion stops in correspondence of the first term:

A=1, B=Z , C=Y

= Long lines
100 <L <300 km 66<V <132kV for overhead
lines;

10<L <30 km 60 <V <66 kV for cables.

The expansion stops in correspondence of the second term:

RISy FIRAS el P2
2 6 6



The line two-port circuit

= Forlines with nominal voltage between 132 kV and 380 kV we can
use all the terms of the Taylir expansion shown on slide 28.

= Forlines with nominal voltage = 380 kV, we have to use the
hyperbolic expressions with no approximations.

The typical parameters of a transmission line are reported on slide 33.

Important observation: for load flow calculation, it is worth reminding
that any electrical element described by a two-port equivalent
passive and reciprocal, can be replaced by equivalent T or Il
circuits (see slide 34).



The line two-port circuit 34

Typical fransmission line parameters for medium and high voltage overhead
and cable lines.

Overhead Cable

Quantity

20 KV 380 KV 20 KV 380 KV
(1) 2) (3) 4)

Resistance r [Q-m"] |0,268-10°%| 0,020.10% | 0,0995.10%| 0,025-10~2
(5) (5) (6) (6)
Conductance g [S - m] — 0,007-10~° | 0,285-10°° | 0,194.10°

Inductance 1 [H-m™] 1110 | 0,853-10°® | 0,309-10% | 0,710-10°°

Reactance x [Q-m™] |0,345.10°| 0,268-10°% | 0,0971-10 % | 0,223-10 2

Capacitance ¢ [F-m™ | 107.10-2 | 137.10- | 302102 | 266-10"2

Susceptance b [S - mT] 3,36-10°° | 4,30-10°° 94,9-10° 83,6-10 °

Att. Const. [m™]
- 0,393-10 ¢ 0,041-10°° 1,42-10° 0,247-107°°
'Y Phase Const.[° - m™]

0,0659-10 [ 0,0615-10*| 0,192-107% | 0,248-10

__ [Module Q" 361 250 38 52
ZO Phase [7] -18.92 -2.09 -22.65 -3.13

(1) Line with Cu conductors 70 mm?

(2) Line with AlAcr diameter 31,5 mm

(3) Tri-polar Cu cable conduttors 240 mm?, insulation with EPR
(4) Tri-polar Cu cable 1200 mm2, insulation with fluid oil

(5) Temperature of 20°C (6)Temperature of 85°C




The line two-port circuit

Circuit representation of fransmission lines using T or I1 equivalent circuits.

TYPE OF TWO-PORT Passive two-port eq.
EQUIVALENT Symetrical reciprocal
3 4
4=D-1:Z~ Z.=Z=
Z. C
=coshjL _2 AN
¥ tanh(7Z/2
- §=7" = _0 Smtl 1
Z3
5 5 5sinhil
_ 2 Z. 1 Z.=B=2Z 7
C=——°? =—sinh 7L !
Z. 7. 4 '
S — Z. » » B
A-D-1+% | ZZ=—--
Z. A+l
— 7, )—I—q Zy [~ 2 stz
_ — T2 A
Zm B-2Z.+ %
Z«
| 7.1 1
C T tanh(7/2)
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Active-reactive power flow expressions in
tfransmission lines

The expression of the apparent power at the end of the line reads:

and since .
E,=AE, +BI, =1, =22

&

_ 3, :3E—a(—p 4E,

we can assume that E, is placed on the real axis (the modeler has the
freedom to choose a reference phasor). Furthermore, we define 6 as the

electrical angle between E, and E,: 6 = arg(E, — E, ). Therefore:

_ E,E E A _EE, ¢/ _E*4e/%
Se=P +jO =3 ‘=% 3 a=a=_3 ¢ P~ _ _3a — =

aTJ Qa B B B e /P B e /P
:3Efp ej(ﬂg—e) —3E5é€j(ﬁ3_aA) —

3 E A .
; pcos(ﬂB—9)—3E§%cos(,33—aA)+j[ ; psm(ﬁB—9)—3E§Esm(ﬁ3—0@1)}




Active-reactive power flow expressions in
tfransmission lines

From the previous expression of the apparent power, we can extrapolate
the real and imaginary parts corresponding to the active and reactive
power flows at the line arrival:

3F E A

P =—"Lcos(B,—0)- 3E§Ecos(ﬁ3 a,)
3EE, . A .

0, = ; . Sln(ﬁB —-0)- 3E§ ESIH(ﬁB —-a,)

By following a similar procedure, we can derive the active and reactive
power flows at the line departure:

3E E , A
P = 103 Lcos(B, +0)+3E> ECOS(BB

p

3E E

0,=- psin(ﬁB+9)+3E§%sin(ﬁB—aA)



Active-reactive power flow expressions in
tfransmission lines

If the line is lossless and without shunt admlﬂqnce the equations that we
wrote become even simpler (o, =0 |A| =1,8, = 5 JB=jX ):

3EE,
P =P =—2L""gino
X

p a

Q, = 3;:“ (Ep cosO—Ea)

£y (Ep —-E, cos@)

Q,= "
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Characteristic and natural power n

Let us suppose 1o supply a load via a line and the load has an
impedance equal to the line’s characteristic impedance 7.
In these conditions, the power supplied to the load is called
characteristic power and can be computed as follows:

S ,a :])O,a +jQ0,a :3Eala = 3Ea

s>

a

IN

Ve Ve a -
N Z, (cost// - J sint//) B Z, (COSW v Slm/j)

Observation: the argument ¥ of Z, is negative (see the table on slide
33). Therefore, the characteristic power has a reactive power that is
negative.



Characteristic and natural power

Let us suppose that the line is lossless: r=g=0 2>

7 _ r+jol' |1l
" Ng+joc' \c'

In these ideal conditions, the characteristic impedance is a real number
called natural or surge impedance.

Also, the delivered power to the load is only real (i.e., active power)
and it is called natural power:




Characteristic and natural power

In these conditions we have that the voltage and current profiles
obtained for the orientation x~, have an easier expression:

Ex = %(Ea +ZOTa)e7x Me—% _ %(Ea +Zoja)87x _ Ea67x

(= E ). - .
e V= E([G + Za ]eyx = Iae”

<
I
| —
7~ N\
Sl
_|_
RSl
N—
®
=i
=
+
N | —
Sl
|
NN =
I

0

Furthermore, we have that the following equality holds vx:

E Ee™ _
St =—t——=7
I e

a




Characteristic and natural power m

For x = L, and for the orientation x~, we have that Ex|,-, = E, and
Lelx=1 = I, therefore, since % = Z, also for x = L, we get the same result
of slide 20:

In other words, a line supplying a load equal to its characteristic
impedance has the same voltage and current profiles of the same line
that is infinitely long.

Pay attention that this statement is true for 0 < x < L.



Characteristic and natural power m

Furthermore, the condition
Y x
e

= a :ZO

Yx

S~ =
~I| =
Q

Involves that voltage and the current at each generic position x of the

line are characterised by a ratio and phase displacement that constant.
Additionally, we have that:

E '
= =7 =,|— > wc'dxE’ =wl'dxI’
C

B

Namely, for a lossless line delivering the natural power, at each position
x, the reactive power generated by the line infinitesimal shunt

capacitance wc’'dxE? is equal to the reactive power absorbed by the
line infinitesimal series inductance wl’'dxIZ.

In other words, the line is reactive balanced.



Characteristic and natural power m
Furthermore, for a lossless line delivering the natural power we have:

E =E¢" =E o

a a

Namely, voltage and current phasors along the line are simply rotating
without any attenuation.

For high voltage lines, the parameters r, g are usually negligible with
respect to wl’ and wc’ (see slide 33 for 380 kV lines). Therefore, when one
of these lines operates nearby the characteristic power, it is also true
that it is operating close to the natural power. For medium voltage lines
this is observation is not true.



Characteristic and natural power

Rated voltage | Characteristic | Natural power

V. IKV] impedance
Z, [Ohm]
20 400 1
50 400 6
132 400 44
220 390 124
380 260 560
700 240 2000

1000 240 4000
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The Baum-Perrine diagram




The Baum-Perrine diagram m

Step-by-step construction of the diagram

The Baum-Perrine diagram allows to graphically interpret the link between the

line active/reactive power flows and the voltage phasors at line terminals.

In what follows, we start by fixing the voltage phasor E,.

Step by step Construction:

1. Draw the voltage at the end of the line E,. Since it is our reference, we
place it on the real axis.

2. Draw the current phasor at the end of the line 1.

3. Draw A E,, this corresponds to the voltage at the start if the line is in no-
load condifions.

4. Name the end of A E, as the point M. Note that this point only depends on
the physical characteristics of the line (lengths, voltage level, etc) and not
on the loading condition:s.

T M
o A-FE, AAN

e——

:Ea
O



The Baum-Perrine diagram m

Step-by-step construction of the diagram

4. From M draw B I, and obtain E, since E, = AE, + B 1,.
5. Name the end of E, as the point N. From N, draw two axis, one forming
an angle of ¢ with B I, and one perpendicular.




The Baum-Perrine diagram ﬂ

Step-by-step construction of the diagram

/. The two axes have the following characteristics:
« They do not depend on the loading conditions of the line.
« The projections of N onto the two axes are proportional to the active

(P,) and reactive (Q,) powers c;f the line delivered at the arrival.
x P,

I
o I cos ol N
I !




The Baum-Perrine diagram

Animation - Fixed Axes




The Baum-Perrine diagram

Animation - CbhstdﬁffActiye Power

x P,




Animation - Constant Reachve Power ocP

x I, cosgo




Line characteristics = No-load: E,<E, (Ferranti

V= 220kV . | : effect)
E,= %—Q kV \\\ Mw] p | = P, 70, (operation point R)
_ \ —> voltage drop = 21%
L= 500 km NN
NN 0 = P, (operation point R’)
AN \ -> voltage drop = 6%
NN .
e {10 50" NN NI AN = To obtain a null voltage
_'°_‘ =0866e 78050 N \\ \\ 75{) SR — drop (still delivering P,) we
B=1975e’ 5005 (1] N \ \ pr \\ RR*=0Q  need the phasor E,in R”.
C =1294 ¢! [Q] \ N A ,.)‘1 \ R This corresponds having a

Line load 7 ' capacitive load that

g generates the reactive
power AO=RR” where the
fraction RR’ is absorbed by
the load while the fraction
R’R” is injected by the line
and is used to compensate
the voltage drop produced
by the transfer of active
power to the load.
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The Ferranti effect




The Ferranti effect

The Ferranti effect refers to the phenomenon where the voltage at the
end of a (long, high-voltage) transmission line is higher than the voltage
at its start, particularly under light load or no-load conditions.

This phenomenon is of interest to:

1. Model the behavior of the line when it is energized after it has been
kept offline due to maintenance reasons so, the line load is zero.

2. Understand criticalities occurring during the restoration process of a
power system following a black out. Indeed, after a black out, the
grid/line loads are zero.

3. Quantify the reactive power produced by the line when it is in no-
load conditions.
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Let us recall the solutions of the transmission line equations for the
reference x~ and using hyperbolic functions:

E, = E, coshyx + Z, I, sinhyx

I, = I, coshyx + = sinh yx
Zo

Let us assume the line to be open at the end, i.e. I, = 0 to study the
relation between the voltage at the start and the end of the line, we
obtain:

E, = E,coshyL

_ E E, sinh L
I, = TasinhVL =_r ):
Zy ZocoshylL
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From the solution of the transmission line equations with reference x*:
Ey = E, coshyx — Zy I, sinh yx

we replace the expression of I, obtained in the previous slide:

P . Z_EpsinhVL_h_ _F L Esinh?L b
S e 7 A A e A 7 A
E, B
= — (cosh yx cosh YL — sinh YL sinh yx)
coshyL

b hy(L
~ coshyL coshy( *)

We have obtained an expression that contains only the voltage along
the line E, and the voltage at the beginning of the line E,,.



The Ferranti effect

E b hy(L
X coshyL coshy (L = x)

And, equivalently, for the current:

I Ep inh 7(L — x)
= = S1n — X
¥ ZycoshyL Y

If the line is also lossless (r = g = 0), we have:

7=+ jow)) (g + jwc) = +jwVlc; Z‘O=j(r+j‘“l) _ |t

(g +jwc) c
and if y has only the imaginary component, cosh x = cos x, SO we get:
E
E, = P___cosw(L —x)Vic
¥ cos wlLVlc ( )
_ E
L, = P sinw(L — x)Vlc

\E cos wLVlIc
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E _ E
cosw(L — x)\/l_c L, = P
\/gcos wlVic

The last two equations show that for an unloaded line:

= E.isin phase with E,, and [, is in leading quadrature with E, at every point
along the line.

= The RMS value of the voltage and current varies along the line according to
a cosine and sine laws, respectively.

= There are nodes, i.e. points where the voltage is permanently zero) and

antinodes, i.e. points where the voltage is maximum. A similar situation
applies to the current.

=  Obviously, the distance between two points where E,. (or I,.) is identical is
equal to the wavelength A. Indeed, we have that the argument of the cos

and sin functions has to be equal to 2w, namely: wAVic = 2w, S0 A = j\/%.

By =—"2
* cos wLVlc

sinw(L — x)\/l_c
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=  For the case under consideration, antinodes and nodes of E, and I, are
spaced by 1/2;

= Antinodes of E, are spaced from the nearest antinodes of I, by 1/4;

= |n high-voltage fransmission lines (L < A/4), in the case of lossless lines, we

_2m
have (recall that 4 = w\/E)'

Ep Ep Ep

E = = =
A coswlVic cosZn%

Thus, for 0 < L < 1/4 (A/4 = 1500 km), it implies that 0 < 2r2 <2 = cos 2m;

decreases from 1 to 0, and thus the voltage at the (open) end of the line is
always larger than the voltage (applied) at the origin.

Since, in practice, actual lengths of power systems lines are way shorter than
1500 km, we always have this condition when the line is unloaded.
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= |f we consider the losses, for L — %,Ea still increases significantly, and the over-

voltages at the end of the line can be much larger than those compatible
with the line’s insulation. This phenomenon was first observed in 1887 during
the installation of underground cables in London by Sebastian Ziani de
Ferranti on 10 kV AC power distribution systems, and thus it is called the
Ferranti effect.

= The following table shows the overvoltage foc’ror% = % for various lengths of
P

a typical high voltage line at 50 Hz when unloaded.

L (km) A E,/E, =1/A
100 0.995 1.005
200 0.976 1.025
300 0.95 1.053
400 0.913 1.095
500 0.866 1.155
600 0.808 1.238
800 0.668 1.497

1000 0.498 2.008

In practice, to avoid such issues, overhead lines at 50 Hz should not exceed a
length of 600-700 km (500-600 km at 60 Hz).
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Final Remarks

1. Line with no load: |E,| > |E,| due fo

the Ferranti effect. The line behaves
essentially as a capacitor since the
value of shunt capacitive
impedances is way bigger than the
series line impedance.

. Lien with purely capacitive load: the
effect of the previous case is
amplified. As a result,|E,| > |E,|. This
condition should be avoided.

. Line with purely inductive load:
If I, = I, then |E,| = |E,|
If I, > I, then |E,| < |E,|
If I, < I, then |E,| > |E,|

I




Final Remarks

4. line with a purely resistive load
equal to the characteristic
impedance R = Z, (assumed real for R
losses line): the vql’roge drop caused WYy e —> 7
by the flow of active poweris almost 1 1L EZ
compensated by the voltage rise 5, L L s ;R:%
due to the flow of capacitive power.

As aresult, |E4| is slightly less than

|Ep|.

5. Line with a purely resistive load lower
than the characteristic impedances Qs
(assumed real for losses line): the P P
active power flow is larger than the :
characteristic one. The voltage drop
caused by the flow of active power % — — E, §R< 10|
is larger than the voltage rise due to
the flow of capacitive power. As a °

result, |E,| < |E,|.

:
%




Final Remarks

6. Line with aresistive/inductive load where R = Z,: the voltage drop due to
the flow of active power P is approximately compensated by the voltage
rise due to the flow of capacitive power Q.4,. The remaining voltage drop is

due to the flow of inductive power Q;,,; and thus |E,| < |E,|.

Qcap

Qind

\
4
o NN vy
AN
C
+

Ir

Ir
v

;RZM

7. Line with a resistive/capacitive load where R = Z,: as in the previous case,
the effects of P and Q.4, are partially compensated. The remaining voltage

rise is due to the flow of Q.,,, and therefore|E,| > |E,|.

cap

—C

Ir

IR = Z,|
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In transmission lines where the longitudinal inductance is larger
compared to other parameters, the following power transfer
mechanisms are predominant (i.e., equations in slide 39):

- the active power flow through an electrical line is linked
directly to the angle 6 (phase difference between the
voltage phasors in the end and in the beginning of the line);

« the reactive power flow, and its sign, is strictly linked to the
difference of the voltage magnitudes at the two line
termnals.

In transmission lines where the parameters have equal weight (for
instance in distribution networks where the ratio r/x,’>1) the
mechanisms that govern active and reactive power flows
described by the above two bullet points are no longer valid and
a cross-link between amplitude and angles of the voltage phasors
at the line terminations and active/reactive power exists meaning
that equations on slide 38 cannot be approximated.



